Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells Dev ; 169: 203754, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34695617

RESUMO

Immature animal oocytes are naturally arrested at the first meiotic prophase (Pro-I), which corresponds to the G2 phase of the cell cycle. In Xenopus oocytes, Myt1 kinase phosphorylates and inactivates cyclin-dependent kinase 1 (Cdk1) at Pro-I, thereby preventing oocytes from entering meiosis I (MI) prematurely. Previous studies have shown that, upon resuming MI, Cdk1 and p90rsk, which is a downstream kinase of the Mos-MAPK pathway, in turn phosphorylate the C-terminal region of Myt1, to suppress its activity, thereby ensuring high Cdk1 activity during M phase. However, the roles of the N-terminal region of Myt1 during meiosis and mitosis remain to be elucidated. In the present study, we show that the N-terminal region of Myt1 participates in the regulation of Myt1 activity in the Xenopus cell cycle. In particular, we found that a short, conserved sequence in the N-terminal region, termed here as the PAYF motif, is required for the normal activity of Myt1 in oocytes. Furthermore, multiple phosphorylations by Cdk1 at the Myt1 N-terminal region were found to be involved in the negative regulation of Myt1. In particular, phosphorylations at Thr11 and Thr16 of Myt1, which are adjacent to the PAYF motif, were found to be important for the inactivation of Myt1 in the M phase of the cell cycle. These results suggest that in addition to the regulation of Myt1 activity via the C-terminal region, the N-terminal region of Myt1 also plays an important role in the regulation of Myt1 activity.


Assuntos
Proteínas de Ciclo Celular , Meiose , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Mitose/genética , Fosforilação , Xenopus laevis/genética
2.
Biochem Biophys Res Commun ; 515(1): 139-144, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31128913

RESUMO

During cleavage of Xenopus laevis, the first mitotic cell cycle immediately following fertilization is approximately 90 min and consists of S, G2, and M phases. In contrast, the subsequent eleven cell cycles are approximately 30 min and consist mostly of S and M phases. The balance between Cdc25 and Wee1A/Myt1 is thought to be crucial for Xenopus first cell cycle progression; however, the role of Myt1 in this period has not been fully investigated. In this study, we examined the roles of Myt1, Wee1A, and Cdc25A in the first cell cycle of Xenopus laevis. Inhibition of Cdc25A with antisense morpholino oligonucleotides lengthened the duration of the first cell cycle to some extent, whereas it was slightly shortened by ectopic Cdc25A expression, suggesting that the low concentration of Cdc25A during the first cell cycle does not fully account for the long duration of this cycle. Using the Wee1A antisense morpholino oligonucleotide and neutralizing antibody against Myt1, we found that Myt1 phosphorylates and inhibits Cdk1 much more effectively than Wee1A during the first cell cycle in Xenopus. Taken together, these results suggest that the activity of Myt1 is predominantly responsible for the duration of the long G2 phase in the first mitotic cell cycle in Xenopus.


Assuntos
Ciclo Celular/genética , Fase G2/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Feminino , Regulação da Expressão Gênica , Mitose/genética , Oligonucleotídeos Antissenso/genética , Oócitos/citologia , Oócitos/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
3.
Sci Rep ; 7(1): 15143, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29123156

RESUMO

Physiological processes in cells are performed efficiently without getting jammed although cytoplasm is highly crowded with various macromolecules. Elucidating the physical machinery is challenging because the interior of a cell is so complex and driven far from equilibrium by metabolic activities. Here, we studied the mechanics of in vitro and living cytoplasm using the particle-tracking and manipulation technique. The molecular crowding effect on cytoplasmic mechanics was selectively studied by preparing simple in vitro models of cytoplasm from which both the metabolism and cytoskeletons were removed. We obtained direct evidence of the cytoplasmic glass transition; a dramatic increase in viscosity upon crowding quantitatively conformed to the super-Arrhenius formula, which is typical for fragile colloidal suspensions close to jamming. Furthermore, the glass-forming behaviors were found to be universally conserved in all the cytoplasm samples that originated from different species and developmental stages; they showed the same tendency for diverging at the macromolecule concentrations relevant for living cells. Notably, such fragile behavior disappeared in metabolically active living cells whose viscosity showed a genuine Arrhenius increase as in typical strong glass formers. Being actively driven by metabolism, the living cytoplasm forms glass that is fundamentally different from that of its non-living counterpart.


Assuntos
Coloides/química , Citoplasma/química , Citoplasma/fisiologia , Substâncias Macromoleculares/metabolismo , Metabolismo , Viscosidade , Animais , Técnicas Citológicas/métodos , Células Epiteliais/fisiologia , Escherichia coli/fisiologia , Células HeLa , Humanos , Oócitos/fisiologia , Coloração e Rotulagem/métodos , Xenopus
4.
Genes Cells ; 20(10): 802-16, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26223767

RESUMO

The Ras-MAP kinase signaling pathway plays important roles for the olfactory reception in olfactory neurons in Caenorhabditis elegans. However, given the absence of phosphorylation targets of MAPK in the olfactory neurons, the mechanism by which this pathway regulates olfactory function is unknown. Here, we used proteomic screening to identify the mitochondrial voltage-dependent anion channel VDAC-1 as a candidate target molecule of MAPK in the olfactory system of C. elegans. We found that Amphid Wing "C" (AWC) olfactory neuron-specific knockdown of vdac-1 caused severe defects in chemotaxis toward AWC-sensed odorants. We generated a new vdac-1 mutant using the CRISPR-Cas9 system, with this mutant also showing decreased chemotaxis toward odorants. This defect was rescued by AWC-specific expression of vdac-1, indicating that functions of VDAC-1 in AWC neurons are essential for normal olfactory reception in C. elegans. We observed that AWC-specific RNAi of vdac-1 reduced AWC calcium responses to odorant stimuli and caused a decrease in the quantity of mitochondria in the sensory cilia. Behavioral abnormalities in vdac-1 knockdown animals might therefore be due to reduction of AWC response, which might be caused by loss of mitochondria in the cilia. Here, we showed that the function of VDAC-1 is regulated by phosphorylation and identified Thr175 as the potential phosphorylation site of MAP kinase.


Assuntos
Caenorhabditis elegans/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Animais , Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Cálcio/metabolismo , Quimiotaxia , Cílios/metabolismo , Técnicas de Silenciamento de Genes , Mitocôndrias/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosforilação , Olfato , Treonina/metabolismo , Proteínas ras/metabolismo
5.
Sci Rep ; 5: 7929, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25604483

RESUMO

The cyclin B-dependent protein kinase Cdk1 is a master regulator of mitosis and phosphorylates numerous proteins on the minimal consensus motif Ser/Thr-Pro (S/T-P). At least in several proteins, however, not well-defined motifs lacking a Pro in the +1 position, referred herein to as non-S/T-P motifs, have been shown to be phosphorylated by Cdk1. Here we show that non-S/T-P motifs in fact form consensus sequences for Cdk1 and probably play roles in mitotic regulation of physiologically important proteins. First, we show, by in vitro kinase assays, that previously identified non-S/T-P motifs all harbour one or more C-terminal Arg/Lys residues essential for their phosphorylation by Cdk1. Second, using Arg/Lys-scanning oriented peptide libraries, we demonstrate that Cdk1 phosphorylates a minimal sequence S/T-X-X-R/K and more favorable sequences (P)-X-S/T-X-[R/K](2-5) as its non-S/T-P consensus motifs. Third, on the basis of these results, we find that highly conserved linkers (typically, T-G-E-K-P) of C2H2 zinc finger proteins and a nuclear localization signal-containing sequence (matching P-X-S-X-[R/K]5) of the cytokinesis regulator Ect2 are inhibitorily phosphorylated by Cdk1, well accounting for the known mitotic regulation and function of the respective proteins. We suggest that non-S/T-P Cdk1 consensus motifs identified here may function to regulate many other proteins during mitosis.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Proteína Quinase CDC2/genética , Proteínas Proto-Oncogênicas/genética , Proteínas de Xenopus/genética , Xenopus laevis , Dedos de Zinco
6.
Nat Commun ; 5: 3667, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24770399

RESUMO

In vertebrates, unfertilized eggs are arrested at metaphase of meiosis II by Emi2, a direct inhibitor of the APC/C ubiquitin ligase. Two different ubiquitin-conjugating enzymes, UbcH10 and Ube2S, work with the APC/C to target APC/C substrates for degradation. However, their possible roles and regulations in unfertilized/fertilized eggs are not known. Here we use Xenopus egg extracts to show that both UbcH10 and Ube2S are required for rapid cyclin B degradation at fertilization, when APC/C binding of Ube2S, but not of UbcH10, increases several fold, coincidently with (SCF(ß-TrCP)-dependent) Emi2 degradation. Interestingly, before fertilization, Emi2 directly inhibits APC/C-Ube2S binding via the C-terminal tail, but on fertilization, its degradation allows the binding mediated by the Ube2S C-terminal tail. Significantly, Emi2 and Ube2S bind commonly to the APC/C catalytic subunit APC10 via their similar C-terminal tails. Thus, Emi2 competitively inhibits APC/C-Ube2S binding before fertilization, while its degradation on fertilization relieves the inhibition for APC/C activation.


Assuntos
Complexos Ubiquitina-Proteína Ligase/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Proteínas F-Box/metabolismo , Fertilização , Meiose/fisiologia , Ligação Proteica , Enzimas de Conjugação de Ubiquitina/metabolismo , Xenopus
7.
Int J Dev Biol ; 55(6): 627-32, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21948711

RESUMO

In early animal development, cell proliferation and differentiation are tightly linked and coordinated. It is important, therefore, to know how the cell cycle is controlled during early development. Cdc25 phosphatases activate cyclin-dependent kinases (Cdks) and thereby promote cell-cycle progression. In Xenopus laevis, three isoforms of cdc25 have been identified, viz. cdc25A, cdc25B and cdc25C. In this study, we isolated a cDNA encoding a novel Xenopus Cdc25 phosphatase (named cdc25D). We investigated the temporal and spatial expression patterns of the four cdc25 isoforms during early Xenopus development, using RT-PCR and whole-mount in situ hybridization. cdc25A and cdc25C were expressed both maternally and zygotically, whereas cdc25B and cdc25D were expressed zygotically. Both cdc25A and cdc25C were expressed mainly in prospective neural regions, whereas cdc25B was expressed preferentially in the central nervous system (CNS), such as the spinal cord and the brain. Interestingly, cdc25D was expressed in the epidermal ectoderm of the late-neurula embryo, and in the liver diverticulum endoderm of the mid-tailbud embryo. In agreement with the spatial expression patterns in whole embryos, inhibition of bone morphoge- netic protein (BMP), a crucial step for neural induction, induced an upregulation of cdc25B, but a downregulation of cdc25D in animal cap assays.These results indicate that different cdc25 isoforms are differently expressed and play different roles during early Xenopus development.


Assuntos
Embrião não Mamífero/metabolismo , Isoformas de Proteínas/genética , Xenopus laevis/embriologia , Fosfatases cdc25/genética , Sequência de Aminoácidos , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Proliferação de Células , Sistema Nervoso Central/embriologia , Quinases Ciclina-Dependentes/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Isoformas de Proteínas/metabolismo , Análise de Sequência de Proteína , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo , Fosfatases cdc25/metabolismo
8.
Dev Cell ; 21(3): 506-19, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21871841

RESUMO

In vertebrates, unfertilized eggs are arrested at metaphase of meiosis II by Mos and Emi2, an inhibitor of the APC/C ubiquitin ligase. In Xenopus, Cdk1 phosphorylates Emi2 and both destabilizes and inactivates it, whereas Mos recruits PP2A phosphatase to antagonize the Cdk1 phosphorylation. However, how Cdk1 phosphorylation inhibits Emi2 is largely unknown. Here we show that multiple N-terminal Cdk1 phosphorylation motifs bind cyclin B1-Cdk1 itself, Plk1, and CK1δ/ε to inhibit Emi2. Plk1, after rebinding to other sites by self-priming phosphorylation, partially destabilizes Emi2. Cdk1 and CK1δ/ε sequentially phosphorylate the C-terminal APC/C-docking site, thereby cooperatively inhibiting Emi2 from binding the APC/C. In the presence of Mos, however, PP2A-B56ß/ε bind to Emi2 and keep dephosphorylating it, particularly at the APC/C-docking site. Thus, Emi2 stability and activity are dynamically regulated by Emi2-bound multiple kinases and PP2A phosphatase. Our data also suggest a general role for Cdk1 substrate phosphorylation motifs in M phase regulation.


Assuntos
Proteína Quinase CDC2/metabolismo , Caseína Quinase I/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Meiose , Óvulo/citologia , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Proteína Quinase CDC2/química , Caseína Quinase I/química , Proteínas de Ciclo Celular/química , Divisão Celular , Proteínas F-Box/química , Feminino , Óvulo/metabolismo , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Proteína Fosfatase 2/química , Proteínas Serina-Treonina Quinases/química , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas c-mos/química , Proteínas Proto-Oncogênicas c-mos/metabolismo , Proteínas de Xenopus/química , Xenopus laevis , Quinase 1 Polo-Like
9.
Mol Biol Cell ; 21(6): 905-13, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20089832

RESUMO

Emi2 (also called Erp1) inhibits the anaphase-promoting complex/cyclosome (APC/C) and thereby causes metaphase II arrest in unfertilized vertebrate eggs. Both the D-box and the zinc-binding region (ZBR) of Emi2 have been implicated in APC/C inhibition. However, it is not well known how Emi2 interacts with and hence inhibits the APC/C. Here we show that Emi2 binds the APC/C via the C-terminal tail, termed here the RL tail. When expressed in Xenopus oocytes and egg extracts, Emi2 lacking the RL tail fails to interact with and inhibit the APC/C. The RL tail itself can directly bind to the APC/C, and, when added to egg extracts, either an excess of RL tail peptides or anti-RL tail peptide antibody can dissociate endogenous Emi2 from the APC/C, thus allowing APC/C activation. Furthermore, and importantly, the RL tail-mediated binding apparently promotes the inhibitory interactions of the D-box and the ZBR (of Emi2) with the APC/C. Finally, Emi1, a somatic paralog of Emi2, also has a functionally similar RL tail. We propose that the RL tail of Emi1/Emi2 serves as a docking site for the APC/C, thereby promoting the interaction and inhibition of the APC/C by the D-box and the ZBR.


Assuntos
Proteínas F-Box/metabolismo , Complexos Ubiquitina-Proteína Ligase/antagonistas & inibidores , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteínas F-Box/química , Proteínas F-Box/genética , Humanos , Meiose/fisiologia , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Proteínas de Xenopus/química , Proteínas de Xenopus/genética
10.
Mol Biol Cell ; 20(8): 2186-95, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19244340

RESUMO

The extracellular signal-regulated kinase (ERK) pathway is generally mitogenic, but, upon strong activation, it causes cell cycle arrest by a not-yet fully understood mechanism. In response to genotoxic stress, Chk1 hyperphosphorylates Cdc25A, a positive cell cycle regulator, and targets it for Skp1/Cullin1/F-box protein (SCF)(beta-TrCP) ubiquitin ligase-dependent degradation, thereby leading to cell cycle arrest. Here, we show that strong ERK activation can also phosphorylate and target Cdc25A for SCF(beta-TrCP)-dependent degradation. When strongly activated in Xenopus eggs, the ERK pathway induces prominent phosphorylation and SCF(beta-TrCP)-dependent degradation of Cdc25A. p90rsk, the kinase downstream of ERK, directly phosphorylates Cdc25A on multiple sites, which, interestingly, overlap with Chk1 phosphorylation sites. Furthermore, ERK itself phosphorylates Cdc25A on multiple sites, a major site of which apparently is phosphorylated by cyclin-dependent kinase (Cdk) in Chk1-induced degradation. p90rsk phosphorylation and ERK phosphorylation contribute, roughly equally and additively, to the degradation of Cdc25A, and such Cdc25A degradation occurs during oocyte maturation in which the endogenous ERK pathway is fully activated. Finally, and importantly, ERK-induced Cdc25A degradation can elicit cell cycle arrest in early embryos. These results suggest that strong ERK activation can target Cdc25A for degradation in a manner similar to, but independent of, Chk1 for cell cycle arrest.


Assuntos
Ciclo Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Fosfatases cdc25/metabolismo , Sequência de Aminoácidos , Animais , Biocatálise , Diferenciação Celular , Embrião não Mamífero/citologia , Embrião não Mamífero/enzimologia , Ativação Enzimática , Humanos , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Óvulo/citologia , Óvulo/enzimologia , Fosforilação , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Xenopus/embriologia , Proteínas de Xenopus/química , Fosfatases cdc25/química
11.
Development ; 135(11): 2023-30, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18469223

RESUMO

In vertebrate embryogenesis, neural induction is the earliest step through which the fate of embryonic ectoderm to neuroectoderm becomes determined. Cells in the neuroectoderm or neural precursors actively proliferate before they exit from the cell cycle and differentiate into neural cells. However, little is known about the relationship between cell division and neural differentiation, although, in Xenopus, cell division after the onset of gastrulation has been suggested to be nonessential for neural differentiation. Here, we show that the Forkhead transcription factor FoxM1 is required for both proliferation and differentiation of neuronal precursors in early Xenopus embryos. FoxM1 is expressed in the neuroectoderm and is required for cell proliferation in this region. Specifically, inhibition of BMP signaling, an important step for neural induction, induces the expression of FoxM1 and its target G2-M cell-cycle regulators, such as Cdc25B and cyclin B3, thereby promoting cell division in the neuroectoderm. Furthermore, G2-M cell-cycle progression or cell division mediated by FoxM1 or its target G2-M regulators is essential for neuronal differentiation but not for specification of the neuroectoderm. These results suggest that FoxM1 functions to link cell division and neuronal differentiation in early Xenopus embryos.


Assuntos
Embrião não Mamífero/metabolismo , Fatores de Transcrição Forkhead/genética , Neurônios/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/genética , Animais , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Proteínas de Transporte/farmacologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Ciclo Celular/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Divisão Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Immunoblotting , Hibridização In Situ , Modelos Biológicos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas de Xenopus/fisiologia , Xenopus laevis/embriologia
12.
Dev Growth Differ ; 47(2): 109-17, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15771630

RESUMO

We have previously shown that the transcriptional product of the novel gene, Xenopus tudor repeat (Xtr), occurred exclusively in germline cells and early embryonic cells and that the putative Xtr contained plural tudor domains which are thought to play a role in the protein-protein interactions. To understand the role of Xtr, we produced an antibody against a polypeptide containing Xtr tudor domains as an antigen and investigated the distribution and the function of the Xtr. Immunoprecipitation/Western blot and immunohistochemical analyses indicated a similar occurrence of the Xtr to the mRNA except for a slightly different profile of its amount during spermatogenesis. In spite of a large amount of Xtr mRNA at late-secondary spermatogonial stage, the amount of Xtr was kept at a low level until this stage and increased after entering into the meiotic phase. Depletion of the Xtr function in the activated eggs by injection of the anti-Xtr antibody caused the inhibition both of microtubule assembly around nucleus and of karyokinesis progression after prophase, but not of the oscillation of H1 kinase activity. These results suggest that the karyokinesis of at least early embryonic cells are regulated by unique mechanisms in which the Xtr is involved.


Assuntos
Divisão do Núcleo Celular , Microtúbulos/metabolismo , Proteínas de Xenopus/fisiologia , Xenopus laevis/embriologia , Animais , Anticorpos/farmacologia , Western Blotting , Núcleo Celular/ultraestrutura , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Proteínas de Xenopus/análise , Proteínas de Xenopus/antagonistas & inibidores , Xenopus laevis/metabolismo
13.
EMBO J ; 23(16): 3386-96, 2004 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-15272308

RESUMO

Cdc25 phosphatases activate cyclin-dependent kinases (Cdks) and thereby promote cell cycle progression. In vertebrates, Chk1 and Chk2 phosphorylate Cdc25A at multiple N-terminal sites and target it for rapid degradation in response to genotoxic stress. Here we show that Chk1, but not Chk2, phosphorylates Xenopus Cdc25A at a novel C-terminal site (Thr504) and inhibits it from C-terminally interacting with various Cdk-cyclin complexes, including Cdk1-cyclin A, Cdk1-cyclin B, and Cdk2-cyclin E. Strikingly, this inhibition, rather than degradation itself, of Cdc25A is essential for the Chk1-induced cell cycle arrest and the DNA replication checkpoint in early embryos. 14-3-3 proteins bind to Chk1-phosphorylated Thr504, but this binding is not required for the inhibitory effect of Thr504 phosphorylation. A C-terminal site presumably equivalent to Thr504 exists in all known Cdc25 family members from yeast to humans, and its phosphorylation by Chk1 (but not Chk2) can also inhibit all examined Cdc25 family members from C-terminally interacting with their Cdk-cyclin substrates. Thus, Chk1 but not Chk2 seems to inhibit virtually all Cdc25 phosphatases by a novel common mechanism.


Assuntos
Proteínas Quinases/metabolismo , Fosfatases cdc25/antagonistas & inibidores , Fosfatases cdc25/metabolismo , Proteínas 14-3-3/metabolismo , Sequência de Aminoácidos , Animais , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2 , Ciclinas/metabolismo , Replicação do DNA , Humanos , Dados de Sequência Molecular , Mutação/genética , Fosforilação , Fosfotreonina/metabolismo , Ligação Proteica , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Alinhamento de Sequência , Proteínas de Xenopus , Xenopus laevis/genética , Xenopus laevis/metabolismo , Fosfatases cdc25/química , Fosfatases cdc25/genética
14.
Dev Growth Differ ; 45(3): 283-94, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12828689

RESUMO

A phosphorylated protein with a molecular mass of 25 000 (pp25) previously purified from the cytosolic fraction of Xenopus laevis oocytes is an effective phosphate acceptor for casein kinases and protein kinase C. In this study, based on the partial amino acid sequence of pp25, a cDNA was isolated that encodes a new yolk precursor protein, Xenopus vitellogenin B1, which contained the sequence encoding pp25. Both mRNA and protein of vitellogenin B1 were expressed in all of the female organs examined. In agreement with a previous report, the amount of vitellogenin B1 protein in the liver increased after stimulation with estrogen. These results suggest that pp25 is a cytosolic non-crystallized yolk protein nutrient source, but it might also play a role in rapid development.


Assuntos
Oócitos/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/isolamento & purificação , Vitelogeninas/química , Xenopus laevis/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , DNA Complementar/genética , Estrogênios/metabolismo , Etiquetas de Sequências Expressas , Feminino , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Proteínas/química , Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Vitelogeninas/genética
15.
J Biol Chem ; 278(21): 19032-7, 2003 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-12754270

RESUMO

The FLRRXSK sequence is conserved in the second cyclin box fold of B-type cyclins. We show that this conserved sequence in Xenopus cyclin B2, termed the RRASK motif, is required for the substrate recognition by the cyclin B-Cdc2 complex of Cdc25C. Mutations to charged residues of the RRASK motif of cyclin B2 abolished its ability to activate Cdc2 kinase without affecting its capacity to bind to Cdc2. Cdc2 bound to the cyclin B2 RRASK mutant was not dephosphorylated by Cdc25C, and as a result, the complex was inactive. The cyclin B2 RRASK mutants can form a complex with the constitutively active Cdc2, but a resulting active complex did not phosphorylate a preferred substrate Cdc25C in vitro, although it can phosphorylate the non-specific substrate histone H1. The RRASK mutations prevented the interaction of Cdc25C with the cyclin B2-Cdc2 complex. Consistently, the RRASK mutants neither induced germinal vesicle breakdown in Xenopus oocyte maturation nor activated in vivo Cdc2 kinase during the cell cycle in mitotic extracts. These results suggest that the RRASK motif in Xenopus cyclin B2 plays an important role in defining the substrate specificity of the cyclin B-Cdc2 complex.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclina B/química , Ciclina B/metabolismo , Xenopus laevis , Fosfatases cdc25/metabolismo , Sequência de Aminoácidos , Animais , Proteína Quinase CDC2/metabolismo , Sequência Conservada , Ciclina B/farmacologia , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática/efeitos dos fármacos , Feminino , Histonas/metabolismo , Técnicas de Imunoadsorção , Mutagênese , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Fosforilação , Reação em Cadeia da Polimerase , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
16.
EMBO J ; 21(14): 3694-703, 2002 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12110582

RESUMO

In Xenopus embryos, cell cycle elongation and degradation of Cdc25A (a Cdk2 Tyr15 phosphatase) occur naturally at the midblastula transition (MBT), at which time a physiological DNA replication checkpoint is thought to be activated by the exponentially increased nucleo-cytoplasmic ratio. Here we show that the checkpoint kinase Chk1, but not Cds1 (Chk2), is activated transiently at the MBT in a maternal/zygotic gene product-regulated manner and is essential for cell cycle elongation and Cdc25A degradation at this transition. A constitutively active form of Chk1 can phosphorylate Cdc25A in vitro and can target it rapidly for degradation in pre-MBT embryos. Intriguingly, for this degradation, however, Cdc25A also requires a prior Chk1-independent phosphorylation at Ser73. Ectopically expressed human Cdc25A can be degraded in the same way as Xenopus Cdc25A. Finally, Cdc25A degradation at the MBT is a prerequisite for cell viability at later stages. Thus, the physiological replication checkpoint is activated transiently at the MBT by developmental cues, and activated Chk1, only together with an unknown kinase, targets Cdc25A for degradation to ensure later development.


Assuntos
Proteínas Quinases/metabolismo , Fosfatases cdc25/metabolismo , Animais , Blastocisto , Ciclo Celular , Quinase 1 do Ponto de Checagem , Ativação Enzimática , Hidrólise , Mutagênese Sítio-Dirigida , Fosforilação , Proteínas Quinases/genética , Xenopus , Proteínas de Xenopus
17.
EMBO J ; 21(10): 2472-84, 2002 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12006499

RESUMO

In eukaryotic cells, the Wee1 protein kinase phosphorylates and inhibits Cdc2, thereby creating an interphase of the cell cycle. In Xenopus, the conventional Wee1 homolog (termed Xe-Wee1A, or Wee1A for short) is maternally expressed and functions in pregastrula embryos with rapid cell cycles. Here, we have isolated a second, zygotic isoform of Xenopus Wee1, termed Xe-Wee1B (or Wee1B for short), that is expressed in postgastrula embryos and various adult tissues. When ectopically expressed in immature oocytes, Wee1B inhibits Cdc2 activity and oocyte maturation (or entry into M phase) much more strongly than Wee1A, due to its short C-terminal regulatory domain. Moreover, ectopic Wee1B, unlike Wee1A, is very labile during meiosis II and cannot accumulate in mature oocytes due to the presence of PEST-like sequences in its N-terminal regulatory domain. Finally, when expressed in fertilized eggs, ectopic Wee1B but not Wee1A does affect cell division and impair cell viability in early embryos, due primarily to its very strong kinase activity. These results suggest strongly that the differential expression of Wee1A and Wee1B is crucial for the developmental regulation of the cell cycle in Xenopus.


Assuntos
Proteínas de Ciclo Celular , Ciclo Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas de Xenopus , Xenopus/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Sequência de Bases , Evolução Biológica , Variação Genética , Meiose , Mitose , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Tirosina Quinases/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Xenopus/genética
18.
Dev Growth Differ ; 33(6): 639-649, 1991 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37281806

RESUMO

We isolated a mouse monoclonal antibody (FAD-II) that disrupts cell-substratum adhesion of amphibian (Xenopus laevis) epithelial cells and endothelial cells. The effect of the antibody was cell-type specific, and the antibody had no effect on fibroblastic cells while fibronectin peptide blocked cell-substratum adhesion of all the cell types examined. In developing frog embryos, the epitopes recognized by the antibody were detected in pronephrotic ducts and in other tissue cells of embryos (from stage 33/34 afterwards). In adult tissues, the antibody mainly recognized antigens in extracelluar matrices. The antigens recognized by the antibody seems to be novel glycoepitopes in frog cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...